Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Handicap - Page 20

  • Dispositif d'accompagnement développé

    Dans le cadre du projet DALi financé par l'Union Européenne, Siemens développe un déambulateur d'accompagnement pour guider les personnes porteuses de handicap à travers les bâtiments publics. Les aéroports et centres commerciaux peuvent générer des problèmes pour les publics âgés, à cause de certains obstacles, ou la perte de repères dans une foule compacte.

     

    auto.jpg

     

     

     

     

     

     

     

     Crédits : Siemens press picture

     

     Le système, appelé "c-Walker" est composé de différents capteurs vidéo, comprenant notamment un capteur Kinect développé par Microsoft pour une console de jeux. L'appareil repère sa position à tout moment, ainsi que le mouvement des personnes et les panneaux d'indication. Siemens prévoit également d'utiliser cette technologie dans des environnements industriels. Par exemple, les dispositifs pourraient avertir les employés d'une chaîne de production de l'entrée dans une zone de danger et interagir avec les machines présentes, pour assurer un itinéraire sûr à travers l'usine.

    Plus généralement, ce projet s'inscrit dans la vision de Siemens de développer des technologies pour un environnement industriel dit "intelligent", où l'interaction homme-machine permet une efficacité accrue.

    Sources :

     "A Smart Walker That Looks Ahead", dépêche idw, communiqué de presse de la société Siemens - 02/12/2013 - http://idw-online.de/pages/en/news564344

    Rédacteurs :

    Aurélien Filiali, aurelien.filiali@diplomatie.gouv.fr - http://www.science-allemagne.fr

  • Une imprimante 3D donne une nouvelle main à une victime de guerre

     Comment une imprimante 3D a permis à un jeune adolescent amputé par l’explosion d’une bombe de retrouver un bras – et une raison de vivre.

    Par Alyssa Hertig.

     

    Daniel-Omar-with-his-pros-009.jpg

     

     

     

     

     

    Daniel Omar avec sa nouvelle prothèse de bras, qui a été créé par une imprimante 3D à un coût coût modique.

    Daniel Omar a perdu ses bras en mars 2012 quand il n’avait que 14 ans durant un bombardement exécuté par des avions soudanais, cette attaque faisant partie de la tentative du gouvernement visant à réprimer des rebelles. Daniel s’est abrité derrière un arbre pour se protéger des explosions, mais quand le vacarme a cessé ses deux mains avaient disparu. Selon The Guardian, " conscient du poids qu’il représentait pour sa famille, en 2012, Daniel Omar a déclaré à un envoyé spécial du Time qu’il aurait dû mourir sous les avions Antonov de l’État lorsqu’ils ont largué leur charge mortelle. " Il pensait ne jamais pouvoir reprendre une simple cuillère de sa vie.

    Cependant, l’imprimante 3D apporte une solution incroyablement simple et économique. Mick Ebeling, qui dirige la start-up nommée avec optimisme Not Impossible Labs, était horrifié à la lecture de l’histoire de Daniel Omar. Après l’avoir trouvé dans les montagnes de Nouba, Ebeling a enfilé sur le moignon de Daniel une prothèse de bras réalisée par impression 3D. Sa conception a coûté à Ebeling un peu moins de 100$. " Project Daniel " apporte de l’espoir à plus de 50.000 personnes amputées durant les périodes de troubles soudanaises et nous donne un aperçu des futures possibilités qui nous sont offertes par cette machine.

    The Guardian raconte :

    “C’était un moment fabuleux de voir ce garçon sortir de sa coquille ", a déclaré Ebeling, se rappelant du moment où Daniel prenait une cuillère pour la première fois depuis son accident. " Permettre à Daniel de pouvoir se nourrir par lui-même était un accomplissement personnel aussi important à mes yeux que la naissance de mes enfants."

    Le Sud du Soudan a été brisé par une sombre guerre civile entre ethnies divisées depuis une prise de pouvoir en suspens commencée en décembre 2013. La situation est si déplorable que des groupes humanitaires comme Médecins Sans Frontières ne peuvent endiguer la propagation des cas d’amputations violentes.

    Ebeling est d’ailleurs déçu par l’insuccès des campagnes étrangères de soutien et cherche à produire une solution alternative. Il est retourné chez lui à Los Angeles, mais il a laissé derrière lui quelques imprimantes 3D afin que les locaux autochtones puissent apprendre à les utiliser. Ils arrivent à présent à assembler un membre par semaine pour les personnes accidentées de la région.

    Harry McCracken dans le Time :

    “Cette innovation ne parviendra pas à obtenir la moindre attention à côté des télévisions 4K, tablettes et autres gadgets durant l’émission de cette semaine – il est pourtant difficile d’imaginer d’autres dispositifs susceptibles de rendre le monde meilleur.

    L’attention des masses a surtout été orientée vers les applications controversées de cette technologie innovante, mais les gens peuvent utiliser des imprimantes 3D avec d’autres objectifs que la production artisanale d’armes à feu. Elle est au cœur de nombreux développements révolutionnaires dans une grande variété de domaines : soins dentaires, biotechnologies, lunettes, art, cuisine, géographie et architecture.

    Dans un monde aux disparités économiques, politiques et technologiques importantes, l’imprimante 3D délivre une lueur d’espoir pour des citoyens piégés dans des régions politiquement fragilisées.

     

  • Des muscles artificiels à base de filets de pêche

    Des muscles artificiels à base de filets de pêche

    Des chercheurs de l’université de Dallas-Texas, aux États-Unis ont mis au point un muscle artificiel, cent fois plus puissant qu'un muscle humain, à base de... filet de pêche et de fil à coudre.

    Des chercheurs de l’université de Dallas-Texas, aux États-Unis ont mis au point un muscle artificiel, cent fois plus puissant qu'un muscle humain, à base de... filet de pêche et de fil à coudre.

    L'invention. Vos objets du quotidien peuvent avoir des vertus insoupçonnés. Des chercheurs de l’université de Dallas-Texas, aux États-Unis ont mis au point un muscle artificiel, cent fois plus puissant qu'un muscle humain, à base de... filet de pêche et de fil à coudre. Leur invention, présentée vendredi dans la revue Science, permet notamment au muscle de fonctionner à l’énergie thermique, à la lumière ou même avec du carburant.

    Des muscles surpuissants. Précisément, les muscles sont fabriqués à base de polymère, matériaux très résistants présents dans les filets de pêche et le fil à coudre. Et ils peuvent soulever 100 fois plus de poids qu’un muscle humain.

    "Les applications possibles pour ces muscles polymères sont multiples. Aujourd’hui, les robots humanoïdes les plus avancés, les membres prosthétiques et les exosquelettes portables sont limités par des moteurs et des systèmes hydrauliques, dont la taille et le poids restreignent la dextérité, forcent la génération et la capacité de travail", explique le Dr Ray Baughman, à l'origine de la trouvaille.

  • Les promesses de la télépathie électronique pour lutter contre le handicap

    Les promesses de la télépathie électronique pour lutter contre le handicap

    La télépathie électronique, qui permet de faire bouger par la pensée, via des électrodes, des membres paralysés de personnes handicapés, donne de grands espoirs. Elle devrait permettre, à terme, de lutter contre la tétraplégie et les amputations.

    Atlantico : Récemment, un singe s'est montré capable de déplacer le bras d'un autre singe, simplement par la pensée. Quel est le processus mis en œuvre? Comment fonctionne le dispositif électrode-ordinateur qui a permis de traduire les pensées du singe "maitre" et d'actionner le bras du deuxième singe?

    Fabrice Papillon : L'expérience, menée par une équipe américaine de l'Université Cornell (et publiée dans la revue Nature Communications) met en présence deux macaques rhésus et un ordinateur. L'idée était la suivante : prouver que le cerveau, par la seule pensée, pouvait contrôler un membre inerte, paralysé, alors que toute communication "physique" (par les nerfs, les muscles) était impossible. Mais au lieu de tout faire avec un seul singe, handicapé, ils ont préféré 2 singes pour une démonstration plus probante. Le premier singe se trouvait face à un écran d'ordinateur. Son cerveau a été muni d'électrodes, pour capter ses ondes cérébrales. Celles-ci étaient ensuite interprétées par un puissant logiciel, pour en tirer les intentions du singe (ses souhaits, les actions qu'il voulait réaliser, etc.). Ensuite, à l'autre bout, un câble était relié à un second singe dont le bras était complètement paralysé (à la suite d'une anesthésie). Pour être précis, le câble était relié à la moelle épinière, dans la colonne vertébrale, dont le rôle est de transmettre les impulsions nerveuses aux muscles. Le résultat est stupéfiant : dans 82% des cas, lorsque le premier singe "pensait" mettre un curseur au cœur d'une cible, sur son écran d'ordinateur, ses intentions étaient interprétées par le logiciel, via ses électrodes, et transmises à la moelle épinière du deuxième singe. Celui-ci saisissait alors un joystick, comme dans un jeu vidéo, et déplaçait le curseur pour le mettre au cœur de la bonne cible ! La pensée du premier singe était donc transmise, via un logiciel et un câble, au bras du second singe qui agissait pour lui ! Et cela s'est reproduit plus de 8 fois sur 10… Sans compter que les scientifiques ont même inversé les rôles plusieurs fois : le singe "maître" est devenu le singe "exécutant" et vice-versa. Et les résultats étaient tout aussi impressionnants.

    Qu'est-ce que cela implique pour l'avenir? Verra-t-on des prothèses animées par la pensée? Quelles sont les applications que nous serions en mesure de concevoir, si tant est qu'une telle prouesse technique soit possible pour des humains?

    Bien sûr, l'idée est de réussir la même prouesse chez un seul et même singe et, à terme, chez l'homme. Prenons le cas d'une personne tétraplégique, totalement paralysée à la suite d'un grave accident par exemple. En général, sa paralysie provient d'une section de la moelle épinière, dans sa colonne vertébrale. L'idée, on le voit, serait de relier son cerveau (via des électrodes) à un ordinateur qui interpréterait ses pensées, puis, grâce à un câble relié à la moelle épinière sous le point de rupture du à l'accident, de transmettre les impulsions nerveuses aux muscles pour lui permettre d'utiliser ses membres ! Il s'agirait donc de "by-passer", court-circuiter la moelle épinière et les longs axones neuronaux (les longues tiges de nos neurones neuromoteurs qui se prolongent du cerveau vers les muscles à travers la moelle épinière) pour transmettre de manière artificielle des informations nerveuses et musculaires. Bien sûr, une telle perspective est très lointaine. Plus proche de nous, une équipe franco-japonaise que je connais bien, met au point une technique peut-être moins complexe, moins lointaine, mais tout aussi stupéfiante. L'équipe du Pr Abderrhamane Kheddar, près de Tokyo, au Joint Robotics Laboratory (laboratoire mixte CNRS ? AIST), a réussi par le même type de dispositif à traduire la pensée d'un homme (un étudiant, pour l'expérience) par un robot humanoïde. En substance, l'étudiant, équipé d'électrodes, regardait un verre parmi d'autres sur une table ; le logiciel interprétait sa pensée et le robot saisissait le bon verre !

    Le robot n'était pas capable de "voir", bien sûr, les yeux de l'étudiant se poser sur le verre. Il recevait simplement l'interprétation des ondes cérébrales, et donc l'ordre de saisir ce verre et pas un autre. L'étape d'après consistera à saisir l'intention qui en découle : tendre le verre à l'étudiant pour qu'il boive… Dans ce cas comme dans celui des singes, il s'agirait d'une révolution pour les personnes tétraplégiques ou très handicapées : elles pourraient être assistées, grâce à l'informatique, dans leur vie quotidienne. Leur pensée serait traduite en actes par des robots, ou leurs propres membres.

    Quelles seront véritablement  les "modalités d'utilisation"?  En termes de sensations, cela ressemblera-t-il aux sensations naturelles?

    Dans le cas des singes, il est très difficile de répondre à cette question. Il faudra interroger les premiers vrais patients humains qui en bénéficieront, et diront ce qu'ils ressentent. Il existe, on le sait, des phénomènes du type "membre fantôme" chez les personnes handicapées (sensation d'un membre amputé par exemple). Il est donc possible que des sensations soient reconstituées par le cerveau qui verra les membres agir, malgré la paralysie. Il pourrait même exister, à terme, une boucle de "rétroaction" capable de renvoyer, dans l'autre sens, des informations sensorielles au cerveau pour lui restituer les sensations dues au mouvement, ou au toucher, malgré la déconnexion physique des membres et du cerveau.

    Les cerveaux des singes et les notre ne sont vraisemblablement pas composés de la même façon. Pourrait-on assister à une forme de rejet, comme dans le cadre d'une greffe? Quels peuvent être les risques pour l'Homme?

    Non, en l'espèce, aucun rejet possible, puisqu'il ne s'agit pas de greffer des organes vivants provenant d'un donneur différent du malade. Il s'agit plutôt d'équiper des malades de simples électrodes et de fils, tous "biocompatibles" et donc acceptés par l'organisme, pour leur permettre de réaliser des tâches avec leurs propres membres. Certaines expériences proches ont été réalisées, et notamment en France, avec le Pr Rabischong et son programme "Lève-toi et marche" : une personne en fauteuil roulant, Marc Merger, a pu remarcher grâce à des électrodes reliant son abdomen à ses jambes (écouter ici à ce sujet, le très récent documentaire de France Culture (émission "Sur les docks") qui revient sur cette aventure). La contraction de l'abdomen transmet des ondes électriques aux muscles qui se contractent, créant donc là encore un "by-pass" de la moelle épinière. Cette expérience, comme nous le montrons dans l'un de nos films ("Les patients de l'espoir", réalisé par Emmanuel Descombes, France 3, 2010) n'a malheureusement pas pu être reproduite sur une jeune patiente belge, malgré plusieurs tentatives. Mais c'est techniquement possible. S'il s'agit de personnes amputées, il faudra ajouter de vraies prothèses "bioniques", qui remplacent une main, un bras ou une jambe disparus. Et là, le mythe de Steve Austin, "L'homme qui valait 3 milliards", deviendra réalité !

    Read more at http:??www.atlantico.fr?decryptage?promesses-telepathie-electronique-pour-lutter-contre-handicap-fabrice-papillon-988645.html#69P5TKuHRpaobq0e.99

  • Hugh Herr : l’ingénieur aux 8 prothèses de jambes bioniques

    Hugh Herr : l’ingénieur aux 8 prothèses de jambes bioniques

    Hugh Herr est devenu une véritable star pour ne pas dire un demi-dieu dans le monde des prothèses bioniques mais aussi dans celui des passionnés de droïdes.

    Sa particularité ?

    Etant lui-même amputé à la suite d’un accident survenu lors d’une expédition d’alpinisme il décide de se lancer dans la conception et la fabrication de ses propres prothèses ce qui va le propulser très vite dans le domaine des très hautes technologies.

    Hugh Herr est à ce titre persuadé d’une seule et une seule chose : dans un avenir proche, il vaudrait mieux être une personne amputée qu’une personne valide.

    Il est d’ailler convaincu que d’ici une vingtaine d’années, un adulte amputé pourra se mouvoir plus facilement qu’un adolescent de 18 ans.

    Cette certitude, il la tire du fait que ses prothèses destinées à l’escalade (et développées par ses soins) lui permettent à l’heure actuelle de grimper à un rythme supérieur à ce qu’il pouvait accomplir par le passé.

    Devenu directeur du groupe Biomécatronique de la prestigieuse Université Harvard aux États-Unis, il peut se concentrer entièrement à sa passion : l’avancement des procédés d’incorporation de machines dans le fonctionnement du corps humain. Un domaine ou il excelle pour preuve, sa collection de brevets comme celui du Rheo Knee, genou artificiel commandé par ordinateur ou celui de la première prothèse de cheville robotisée du monde.

    En plus de sa fonction au MIT, il a fondé son entreprise BIOM (précédemment iWalk) spécialisée dans le domaine de membres bioniques.

    Pour l’instant, Hugh Herr a développé et mis au point huit catégories de paires de jambes bioniques pour des usages très spécialisés : pour la marche, pour la course, pour l’escalade en montagne…

    Son but ultime est de fusionner toutes les particularités de ces différentes prothèses en une seule qui deviendrait en quelque sorte LA prothèse ultime.

    Prolongement pratique de sa passion, Le MIT et sa société Biom ont investi 50 millions de dollars afin de développer une nouvelle batterie qui permettrait d’améliorer les performances des prothèses (capables actuellement d’atteindre une limite de trois mille pas par charge).

    De même, les deux partenaires désirent renforcer la durée de vie des joints qui ne dépassent actuellement pas les cinq années.

    Tout ce travail aura-t-il des répercutions concretes chez toutes les personnes amputées et handicapées ?

    Sans aucun doute ! En effet, Hugh Herr et le MIT étudient actuellement différents modèles d’exosquelettes qui présentent tous la particularité de se connecter au corps de manière moins contraignante qu’une prothèse bionique.

    Une fois les études, les propositions et le matériel validés, le MIT compte mettre à disposition de tous les codes et les modèles 3D des membres robotisés afin d’en élargir l’accès à tous.

    Plus que jamais il faudra compter sur Hugh Herr et le MIT comme acteurs principaux de la mise au point des jambes et prothèses bioniques de demain.

    Le travail de Hugh Herr est à ce point reconnu qu’il possède sa propre page Wikipédia (US) ou vous pourrez d’ailleurs en savoir plus sur sa biographie, ses publications et son travail. Pour cela une seule adresse :

    http://en.wikipedia.org/wiki/Hugh_Herr

    Article original : www.handimobility.org

  • Une main bionique restitue le sens du toucher

     

    Amputé, un patient retrouve la sensation du toucher grâce à une main bionique, le temps d’un essai clinique. Cela ouvre la voie vers la fabrication d'une prothèse qui redonne les fonctions et les sensations d’un membre perdu. Il faudra cependant attendre quelques années avant qu’elle n'arrive sur le marché.

    Dennis Aabo Sørensen testant la nouvelle main robotisée. Il raconte que grâce à elle, il peut ressentir la forme et la texture de différents objets.

    © École polytechnique fédérale de Lausanne

    amain.jpg

     

     

     

     

     

     

    Dennis Aabo Sørensen testant la nouvelle main robotisée. Il raconte que grâce à elle, il peut ressentir la forme et la texture de différents objets.

     © École polytechnique fédérale de Lausanne

     amain2.jpg

     

     

     

     

     

     

    Alors qu’il réalisait un feu d’artifice dans son jardin, Dennis Aabo Sørensen, un Danois de 36 ans, se blessa très gravement la main gauche. Les conséquences furent fatales : les médecins décidèrent immédiatement de l’amputer. Depuis cet accident, il porte une prothèse capable de détecter les mouvements au niveau de son poignet ce qui lui permet d’attraper des objets. Il doit cependant observer constamment cette nouvelle main pour la contrôler car elle n’est pas reliée à son système nerveux et ne restitue donc pas la sensation du toucher.

     

    La main artificielle permet non seulement d’attraper des objets mais également de les sentir. Pour le moment le dispositif nécessite un appareillage volumineux mais les chercheurs travaillent sur la fabrication d’un système miniaturisé.

    La main artificielle permet non seulement d’attraper des objets mais également de les sentir. Pour le moment le dispositif nécessite un appareillage volumineux mais les chercheurs travaillent sur la fabrication d’un système miniaturisé. © École polytechnique fédérale de Lausanne

     

    Mais les choses pourraient bientôt changer. Dennis Aabo Sørensen sert maintenant de cobaye à une équipe de l’École polytechnique fédérale de Lausanne (EPFL) en Suisse. Neuf ans après son amputation, l’heureux participant a pu à nouveau sentir les choses qu’il touchait grâce à une main bionique chirurgicalement attachée à son bras. Ses avancées, publiées dans la revue Science Translational Medicine, devraient redonner de l’espoir à toutes les personnes qui ont perdu un membre. " C’était incroyable, je suis plus qu’heureux de m’être porté volontaire pour cet essai clinique, raconte-t-il. Non seulement pour moi mais aussi pour tous les autres amputés à qui cette technologie pourrait bénéficier un jour. " En réalité, ce n’est pas la première fois qu’un tel exploit est possible. Récemment, des scientifiques américains ont fabriqué un bras capable de redonner la sensation du toucher. Cependant, le domaine de la robotique médicale n’en est qu’à ses débuts et les recherches se poursuivent pour obtenir une prothèse plus proche d’un vrai membre.

     

    Des électrodes branchées sur les nerfs périphériques

    Lorsque le patient manipule un objet, des capteurs à l’intérieur de la prothèse mesurent la tension de tendons artificiels et la convertissent en impulsions électriques. Cependant, ce signal ne peut pas être interprété en tant que tel par le cerveau. Pour contourner ce problème, les auteurs ont programmé des algorithmes informatiques complexes, capables de transformer le signal en impulsions électriques utilisables par le système nerveux. Ces nouveaux signaux provenant de l’ordinateur sont transmis à la main artificielle par le biais de quatre électrodes ultrafines greffées sur les nerfs périphériques de l’avant-bras.

     

    C’est en janvier 2013 que l'intervention chirurgicale a eu lieu à l'hôpital Gemelli de Rome (Italie). Près de trois semaines de tests ont précédé le branchement final de la prothèse aux électrodes. Ces efforts ont porté leurs fruits. " Grâce à cette nouvelle main, je pouvais attraper des objets, et surtout savoir s’ils étaient mous ou durs, ronds ou carrés ! ", raconte Dennis Aabo Sørensen avec enthousiasme. Cela a cependant été de courte durée puisqu’après un mois, les chercheurs ont dû retirer les électrodes, conformément à la législation européenne régissant les essais cliniques. Mais selon eux, elles devraient pouvoir rester implantées et fonctionner plusieurs années sans endommager les nerfs périphériques.

     

    Cette étude est un pas de plus vers la fabrication d’une main robotisée ressemblant à une vraie. " Il faudra cependant encore attendre quelques années avant qu’elle ne soit commercialisée ", explique Stanisa Raspopovic, une des participantes. La prochaine étape sera de miniaturiser le système qui convertit les informations électriques en impulsions utilisables par le cerveau. Car pour qu’elle fonctionne cette main bionique doit pour le moment être connectée à un ordinateur. Alors seulement, on pourra parler d'une main artificielle.